Create Your Imagination
AI-Powered Image Editing
No restrictions, just pure creativity. Browser-based and free!
4 min to read
Kimi-Audio is an open-source audio foundation model capable of speech recognition, audio generation, and conversational AI tasks. While primarily designed for Linux environments, this guide provides detailed instructions for Windows users to leverage its capabilities through multiple methods.
Step 1: Set Up Development Environment
powershell# Install Chocolatey package manager
Force
Set-ExecutionPolicy Bypass -Scope Process -[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.SecurityProtocolType]
::Tls12iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))
y
# Install essential packages
choco install git python310 cuda ffmpeg -
Step 2: Configure Python Environment
powershellpython -
m venv kimi-env.
\kimi-env\Scripts\activatepip install torch torchvision torchaudio --index-url https://download.pytorch.
org/whl/cu121
Step 3: Install Kimi-Audio
powershellgit clone https://github.
com/MoonshotAI/Kimi-Audio
cd Kimi-Audiopip install -r requirements.
txt
Step 1: Install Docker Desktop
Step 2: Build Kimi-Audio Image
powershelldocker build -t kimi-audio:v0.1 .
Step 3: Run Container with GPU Passthrough
powershelldocker run --gpus all -it kimi-audio:v0.
powershellhuggingface-cli
loginhuggingface-cli download moonshotai/Kimi-Audio-7B-Instruct --local-dir ./
models
Create .env
file:
textMODEL_PATH=./models/Kimi-Audio-7B-Instruct
DEVICE=cuda
PRECISION=bf16
pythonfrom kimia_infer.api.kimia import
KimiAudiomodel = KimiAudio(model_path="models/Kimi-Audio-7B-Instruct")
messages = [
{"role": "user", "message_type": "text", "content": "Transcribe this audio:"},
{"role": "user", "message_type": "audio", "content": "input.wav"}
]
_, transcript = model.generate(messages)
print(transcript)
pythonmessages = [
{"role": "user", "message_type": "text", "content": "Generate happy birthday music"}
]
audio, _ = model.generate(messages, output_type="both")
pythonmessages = [
{"role": "user", "message_type": "audio", "content": "user_query.wav"},
{"role": "assistant", "message_type": "text", "content": "How can I help you?"}
]
response_audio, response_text = model.generate(messages)
asr_example.wav
.Run the ASR Example:PythonCopy
import soundfile as sf
from kimia_infer.api.kimia import KimiAudio
import torch
# Load the model
model_id = "moonshotai/Kimi-Audio-7B-Instruct"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = KimiAudio(model_path=model_id, load_detokenizer=True)
model.to(device)
# Define sampling parameters
sampling_params = {
"audio_temperature": 0.8,
"audio_top_k": 10,
"text_temperature": 0.0,
"text_top_k": 5,
"audio_repetition_penalty": 1.0,
"audio_repetition_window_size": 64,
"text_repetition_penalty": 1.0,
"text_repetition_window_size": 16,
}
# Example 1: Audio-to-Text (ASR)
asr_audio_path = "asr_example.wav"
messages_asr = [
{"role": "user", "message_type": "text", "content": "Please transcribe the following audio:"},
{"role": "user", "message_type": "audio", "content": asr_audio_path}
]
# Generate only text output
_, text_output = model.generate(messages_asr, **sampling_params, output_type="text")
print(">>> ASR Output Text: ", text_output)
qa_example.wav
.Run the Conversation Example:PythonCopy
# Example 2: Audio-to-Audio/Text Conversation
qa_audio_path = "qa_example.wav"
messages_conversation = [
{"role": "user", "message_type": "audio", "content": qa_audio_path}
]
# Generate both audio and text output
wav_output, text_output = model.generate(messages_conversation, **sampling_params, output_type="both")
# Save the generated audio
output_audio_path = "output_audio.wav"
sf.write(output_audio_path, wav_output.detach().cpu().view(-1).numpy(), 24000) # Assuming 24kHz output
print(f">>> Conversational Output Audio saved to: {output_audio_path}")
print(">>> Conversational Output Text: ", text_output)
pythonfrom torch.quantization import
quantize_dynamicmodel = quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
python# Enable gradient checkpointing
autocast
model.gradient_checkpointing_enable()
# Use mixed precision
from torch.cuda.amp importwith autocast(dtype=torch.bfloat16):
outputs = model.generate(...)
Error | Solution |
---|---|
CUDA Out of Memory | Reduce batch size, enable gradient checkpointing |
FFmpeg Not Found | Add to PATH: choco install ffmpeg |
DLL Load Failed | Reinstall CUDA 12.1+ with correct driver |
Tokenizer Errors | Clear HuggingFace cache: rm -r ~/.cache/huggingface |
pythonfrom kimia_train.core import
AudioDatasetdataset = AudioDataset(
audio_dir="custom_audio",
sampling_rate=24000,
max_duration=30
)
trainer = KimiTrainer(
model=model,
train_dataset=dataset,
batch_size=2,
learning_rate=5e-5
)
trainer.train()
pythonfrom fastapi import
FastAPIapp = FastAPI()
@app.post("/transcribe")
async def transcribe(file: UploadFile):
audio = await file.read()
_, text = model.generate([{"role": "user", "content": audio}])
return {"text": text}
Feature | Kimi-Audio | Whisper | AudioCraft |
---|---|---|---|
ASR Accuracy | 98.2% | 97.8% | N/A |
Audio Generation | Yes | No | Yes |
Multimodal Support | Yes | No | Limited |
VRAM Requirements | 24GB+ | 8GB | 16GB |
Conversation Ability | Yes | No | No |
Kimi-Audio is a powerful open-source model for audio tasks, including automatic speech recognition and audio-to-text conversation. By following the steps outlined above, you can successfully run Kimi-Audio on Windows using Docker.
Need expert guidance? Connect with a top Codersera professional today!