8 min to read
Run Qwen3 Next 80B A3B on macOS Apple Silicon. Step-by-step setup, optimizations, and deployment guide for fast, private, and cost-effective AI inference.
One of the most powerful and resource-efficient open-source models available today is Qwen3 Next 80B A3B, a next-generation sparse Mixture-of-Experts (MoE) model from Alibaba’s Qwen team.
This comprehensive guide explains everything you need to know about running Qwen3 Next 80B A3B on macOS—covering model architecture, system requirements, installation, deployment, optimizations, troubleshooting, and use cases.
Qwen3 Next 80B A3B is designed for scalable efficiency and high performance, offering state-of-the-art reasoning and long-context handling while drastically lowering computational overhead.
The result is a model that handles reasoning, code generation, multilingual applications (119+ languages), long-context dialogue, and agent workflows with exceptional efficiency.
Apple Silicon delivers strong advantages for local AI workloads:
With Apple’s unified memory architecture and Metal acceleration, Qwen3 Next 80B A3B can be used effectively on macOS with sufficient RAM and storage.
Component | Minimum | Recommended |
---|---|---|
macOS Version | 13.5 Ventura | Latest macOS 14+ |
Chip | Apple Silicon M1 | M2/M3 Pro or Max |
RAM (Unified) | 32 GB | 64 GB+ |
Disk Space | 42 GB free | SSD required |
Python | 3.9+ | Latest stable version |
Dependencies | MLX metal acceleration | MLX-LM v4+ |
Note: Intel Macs are not supported for MLX quantized builds. Alternative setups (e.g., llama.cpp with GGUF) are possible but slower.
Update Homebrew, install Python, pip, and Git:
brew install python git
python3 -m pip install --upgrade pip setuptools
Install the Metal-accelerated framework for Apple Silicon:
pip install mlx-lm
The 4-bit MLX quantized version is optimized for macOS:
from mlx_lm import load, generate
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
output = generate(
model,
tokenizer,
prompt="Explain the Chudnovsky algorithm to compute π.",
max_tokens=256
)
print(output)
mlx_lm generate \
--model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
--prompt "What is the capital of France?" \
--max-kv-size 512 \
--max-tokens 256
Accelerates inference by generating multiple tokens per step.
pip install 'sglang[all]>=0.5.2'
python -m sglang.launch_server \
--model-path Qwen/Qwen3-Next-80B-A3B-Instruct \
--port 30000 \
--context-length 262144 \
--speculative-algo NEXTN \
--speculative-num-steps 3 \
--speculative-num-draft-tokens 4
pip install vllm
vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct \
--port 8000 \
--max-model-len 262144 \
--speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
Enable up to ~1M tokens with RoPE scaling:
{
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 262144
}
}
Before starting, ensure your system meets the following requirements:
Save the script below as install_qwen3.sh
, then make it executable and run it.
#!/usr/bin/env bash
# install_qwen3.sh — Installs Qwen3 Next 80B A3B on macOS (Apple Silicon)
set -euo pipefail
echo "=== Starting Qwen3 Next 80B A3B Installation ==="
# 1. Update system & Homebrew
echo "- Updating macOS and Homebrew"
softwareupdate --install --all --quiet || true
if ! command -v brew &> /dev/null; then
echo "- Installing Homebrew"
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
fi
brew update
# 2. Install Python
echo "- Installing Python 3"
brew install python@3.11
export PATH="/usr/local/opt/python@3.11/bin:$PATH"
# 3. Upgrade pip, setuptools, wheel
echo "- Upgrading pip, setuptools, wheel"
python3 -m pip install --upgrade pip setuptools wheel
# 4. Install Git
echo "- Installing Git"
brew install git
# 5. Create and activate virtual environment
echo "- Setting up Python virtual environment"
python3 -m venv ~/.qwen3_env
source ~/.qwen3_env/bin/activate
# 6. Install MLX-LM (Metal backend)
echo "- Installing MLX-LM (Metal-accelerated LLM support)"
pip install --upgrade mlx-lm
# 7. Verify Metal backend availability
echo "- Verifying Metal backend"
python3 - << 'PYCODE'
import torch, mlx_lm
print("Torch backend:", torch.backends.mps.is_available(), "MPS GPU count:", torch.backends.mps.device_count())
PYCODE
# 8. Download quantized Qwen3 model
echo "- Downloading Qwen3 Next 80B A3B quantized model"
mkdir -p ~/models/qwen3
cd ~/models/qwen3
python3 - << 'PYCODE'
from mlx_lm import download_model
download_model("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
PYCODE
echo "=== Installation Complete! ==="
echo "Run 'source ~/.qwen3_env/bin/activate' to start using Qwen3 Next 80B A3B."
Make it executable and run:
chmod +x install_qwen3.sh
./install_qwen3.sh
Activate your environment before running:
source ~/.qwen3_env/bin/activate
Create run_qwen3.py
:
#!/usr/bin/env python3
# run_qwen3.py — Simple inference with Qwen3 Next 80B A3B
from mlx_lm import load, generate
def main():
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
prompt = (
"Summarize the benefits of Apple Silicon for AI inference "
"and compare it to x86-based GPUs in 300 words."
)
output = generate(
model,
tokenizer,
prompt=prompt,
max_tokens=350,
temperature=0.1
)
print("\n=== Model Output ===\n")
print(output)
if __name__ == "__main__":
main()
Run it:
python run_qwen3.py
Run quick prompts directly from the terminal:
mlx_lm generate \
--model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
--prompt "Explain the Chudnovsky algorithm for computing π." \
--max-tokens 200 \
--temperature 0.2
Key CLI flags:
--model
: Model identifier or local path--prompt
: Input text prompt--max-tokens
: Number of tokens to generate--temperature
: Sampling randomness (0–1)--max-kv-size
: KV-cache size for context extension--num-beams
: Beam search countDeploy Qwen3 as a local API server using SGLang or vLLM.
pip install 'sglang[all]>=0.5.2'
sglang launch \
--model-path ~/models/qwen3/halley-ai_Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
--port 8080 \
--max-context-length 262144 \
--speculative-algo NEXTN \
--speculative-num-steps 3 \
--speculative-num-draft-tokens 4
Query with curl:
curl -X POST http://localhost:8080/v1/generate \
-H "Content-Type: application/json" \
-d '{ "prompt": "What is the capital of France?", "max_tokens": 50 }'
pip install vllm
vllm serve \
~/models/qwen3/halley-ai_Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
--port 8000 \
--max-model-len 262144 \
--speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
Sample request:
curl -X POST http://localhost:8000/generate \
-H "Content-Type: application/json" \
-d '{ "prompt": "List three use cases for MoE models." }'
Edit config.json
to expand maximum context:
{
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 262144
}
}
pip install peft transformers accelerate
python finetune.py \
--base_model halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64 \
--dataset_path ./my_data.jsonl \
--output_dir ./qwen3_ft \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--lora_rank 16
Below are two end-to-end, real-world examples demonstrating how to leverage Qwen3 Next 80B A3B on macOS using the MLX-LM framework. Each example includes setup instructions, prompt design, Python code snippets, and sample outputs.
You are creating a new API for your team and need concise, structured documentation for a complex Python function.
from mlx_lm import load, generate
# Load the 4-bit quantized Qwen3 Next 80B A3B model
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
# Define your prompt
prompt = """
You are an expert API documentation writer.
Generate clear, Markdown-formatted documentation for the following Python function:
def process_image_batch(images: List[Image], resize: Tuple[int,int], enhance: bool = False) -> List[Image]:
"""Processes a batch of images by resizing and optional enhancement."""
# Implementation omitted
Include:
- Function description
- Parameters with types
- Return value
- Example usage
"""
# Generate and print the documentation
output = generate(
model,
tokenizer,
prompt=prompt,
max_tokens=300,
temperature=0.2
)
print(output)
## process_image_batch
**Description:**
Processes a list of images by resizing each to the specified dimensions and applying optional enhancement.
**Parameters:**
- `images: List[Image]` — A list of PIL Image objects to process.
- `resize: Tuple[int, int]` — Target width and height in pixels.
- `enhance: bool` (default `False`) — If `True`, apply automatic contrast and sharpness enhancement.
**Returns:**
- `List[Image]` — A new list of processed Image objects.
**Example Usage:**
from PIL import Image
imgs = [Image.open(path) for path in ["a.jpg","b.jpg"]]
processed = process_image_batch(imgs, resize=(800,600), enhance=True)
for img in processed:
img.save("out_"+img.filename)
You have a CSV containing sales data and need a quick summary and visualization plan directly in Python.
from mlx_lm import load, generate
# Load the model
model, tokenizer = load("halley-ai/Qwen3-Next-80B-A3B-Instruct-MLX-4bit-gs64")
# Prompt requesting analysis steps
prompt = """
You are a data science assistant.
Given a pandas DataFrame `df` containing columns: 'date', 'region', 'sales_usd', provide:
1. A concise summary of key trends.
2. Python code using matplotlib or seaborn to plot monthly total sales.
Assume `df` is already loaded.
"""
# Generate suggestions
output = generate(
model,
tokenizer,
prompt=prompt,
max_tokens=400,
temperature=0.3
)
print(output)
**1. Summary of Key Trends:**
- Overall sales increased by ~15% over the last year, with a peak in December.
- Region ‘APAC’ shows the fastest growth (+25%), while ‘EMEA’ remains flat.
**2. Visualization Code:**
MTP enables speculative decoding, generating multiple tokens in parallel for faster inference. Currently best supported via dedicated frameworks like SGLang or vLLM rather than raw Hugging Face Transformers.
To leverage MTP, consider deploying an API server on your Mac using:
bashpip install 'sglang[all]>=0.5.2'
python -m sglang.launch_server --model-path Qwen/Qwen3-Next-80B-A3B-Instruct --port 30000 --context-length 262144 --mem-fraction-static 0.8 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
bashpip install 'vllm>=0.10.2'
vllm serve Qwen/Qwen3-Next-80B-A3B-Instruct --port 8000 --max-model-len 262144 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
The model supports up to 262K tokens natively, extendable to about 1 million tokens via RoPE scaling with YaRN method within supported frameworks.
Modify the config.json
in model files to add:
json{
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 262144
}
}
Start servers or inference with compatible options to use this extended context—ideal for documents or chatbots needing ultra-long memory.
rope_scaling
factors.Running Qwen3 Next 80B A3B on macOS is both achievable and practical with Apple Silicon. Using MLX-LM’s 4-bit quantization and Metal acceleration, users can deploy one of the most advanced open-source LLMs directly on their Mac—enabling fast, private, and cost-effective AI inference.
Connect with top remote developers instantly. No commitment, no risk.
Tags
Discover our most popular articles and guides
Running Android emulators on low-end PCs—especially those without Virtualization Technology (VT) or a dedicated graphics card—can be a challenge. Many popular emulators rely on hardware acceleration and virtualization to deliver smooth performance.
The demand for Android emulation has soared as users and developers seek flexible ways to run Android apps and games without a physical device. Online Android emulators, accessible directly through a web browser.
Discover the best free iPhone emulators that work online without downloads. Test iOS apps and games directly in your browser.
Top Android emulators optimized for gaming performance. Run mobile games smoothly on PC with these powerful emulators.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.
ApkOnline is a cloud-based Android emulator that allows users to run Android apps and APK files directly from their web browsers, eliminating the need for physical devices or complex software installations.
Choosing the right Android emulator can transform your experience—whether you're a gamer, developer, or just want to run your favorite mobile apps on a bigger screen.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.