4 min to read
Microsoft's Phi-4 models represent a breakthrough in efficient language model design, offering advanced natural language capabilities while maintaining hardware accessibility.
This guide covers all technical aspects of running Phi-4 Mini and Phi-4 Noesis variants on macOS, including architectural considerations, installation procedures, optimization strategies, and practical applications.
Component | Minimum Specs | Recommended Specs |
---|---|---|
OS Version | macOS 12.3+3 | macOS 14+ |
Processor | Intel Core i7 | M1/M2/M3 Silicon35 |
RAM | 16GB3 | 32GB3 |
Storage | 40GB free3 | SSD with 100GB free |
Python | 3.9+1 | 3.10+3 |
bash# Install Homebrew package manager
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"[3]
# Install Python 3.10
brew install python@3.10[3]
# Verify installation
python3 --version # Should show 3.10.x[3]
bashpython3.10 -m venv phi4-envsource phi4-env/bin/activate[3]
bash# Install PyTorch with MPS support
pip3 install --pre torch torchvision torchaudio --extra-index-url <https://download.pytorch.org/whl/nightly/cpu>[3]
# Install transformers library
pip install transformers sentencepiece accelerate[3]
Use Gradio to create a simple web interface:PythonCopy
import gradio as gr
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to("mps")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(label="Prompt"),
outputs=gr.Textbox(label="Generated Text"),
title="Phi-4 Text Generator",
description="Generate text using the Phi-4 model."
)
interface.launch()
Limit batch size to prevent out-of-memory errors:PythonCopy
max_batch_size = 2
Use 4-bit quantization to reduce VRAM usage:PythonCopy
model = model.quantize(4)
Use the Hugging Face Transformers library to load the Phi-4 model:PythonCopy
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "microsoft/phi-4"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
Install PyTorch and Hugging Face Transformers:bashCopy
pip install torch transformers
Install Python via Homebrew:bashCopy
brew install python@3.10
pythonfrom transformers import AutoModelForCausalLM,
AutoTokenizermodel = AutoModelForCausalLM.from_pretrained("phi4-mini")
tokenizer = AutoTokenizer.from_pretrained("phi4-mini")
def generate(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)[1]
pythonmodel = AutoModelForCausalLM.from_pretrained(
"dimsavva/phi4-noesis",
trust_remote_code=True,
device_map="auto" # Auto-detects M1/M2 GPU[3]
)
pythonimport coremltools as
ctcoreml_model = ct.convert(model)
coreml_model.save("phi4-mini.mlpackage")[1]
pythonfrom flask import Flask, request,
jsonifyapp = Flask(__name__)
json
@app.route("/generate", methods=["POST"])
def generate():
data = request. prompt = data.get("prompt", "")
# ... (add model inference code)
return jsonify({"response": generated_text})[1]
pythonfrom torch.utils.data import Dataset,
DataLoaderclass Phi4Dataset(Dataset):
prompts
def __init__(self, prompts):
self.prompts = def __len__(self):
return len(self.prompts)
def __getitem__(self, idx):
return self.prompts[idx][3]
Issue | Solution |
---|---|
CUDA Out of Memory | Reduce batch size, enable gradient checkpointing3 |
MPS Backend Errors | Update to PyTorch 2.0+, verify Metal support3 |
Tokenizer Mismatch | Ensure transformers library version ≥4.28.01 |
Slow Inference | Enable use_cache=True , optimize with ONNX Runtime3 |
Code:PythonCopy
prompt = "Describe the image of a cat sitting on a windowsill."
print(generate_text(prompt))
Code:PythonCopy
prompt = "Solve for x in the equation 3x + 5 = 20."
print(generate_text(prompt))
Feature | Phi-4 Mini | Phi-4 Noesis |
---|---|---|
Parameters | 3.8B1 | 14B2 |
RAM Requirements | 8GB+ | 16GB+5 |
Context Window | 2048 | 163845 |
Quantization Support | Basic | GPTQ5 |
Running Microsoft Phi-4 on a Mac can be achieved by following the outlined steps. By leveraging Phi-4, developers and researchers can explore new possibilities in AI-driven applications, from educational tools to content creation and research assistance.
Connect with top remote developers instantly. No commitment, no risk.
Tags
Discover our most popular articles and guides
Running Android emulators on low-end PCs—especially those without Virtualization Technology (VT) or a dedicated graphics card—can be a challenge. Many popular emulators rely on hardware acceleration and virtualization to deliver smooth performance.
The demand for Android emulation has soared as users and developers seek flexible ways to run Android apps and games without a physical device. Online Android emulators, accessible directly through a web browser.
Discover the best free iPhone emulators that work online without downloads. Test iOS apps and games directly in your browser.
Top Android emulators optimized for gaming performance. Run mobile games smoothly on PC with these powerful emulators.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.
ApkOnline is a cloud-based Android emulator that allows users to run Android apps and APK files directly from their web browsers, eliminating the need for physical devices or complex software installations.
Choosing the right Android emulator can transform your experience—whether you're a gamer, developer, or just want to run your favorite mobile apps on a bigger screen.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.