4 min to read
DeepSeek AI has rapidly gained prominence as a Chinese AI model, rivaling even OpenAI's ChatGPT. Its open-source model, DeepSeek R1, is licensed by the Massachusetts Institute of Technology (MIT), ensuring accessibility for both personal and professional endeavors.
As the first open-source MoE (Mixture of Experts) vision-language model with MIT licensing, DeepSeek-VL2 offers:
Ollama simplifies the installation process, negating the necessity for cloud subscriptions.
Start DeepSeek: Enter the following command to start the application with debug mode enabled:
$env:OLLAMA_DEBUG="1" & "ollama app.exe"
%LOCALAPPDATA%\Ollama
%LOCALAPPDATA%\Programmes\Ollama
%HOMEPATH%.ollama
If you prefer not to download the software, you can access DeepSeek on the web:
This guide explains how to deploy the DeepSeek model using the vLLM framework.
Install Required Packages: Install the required libraries using pip:
pip install vllm==0.6.6.post1
setx OLLAMA_GPUS "1"
(Admin CMD)ollama list
Launch with debugging:
$env:OLLAMA_DEBUG="1"; ollama run deepseek-vl2-tiny
Pros: One-click setup, automatic updates
Cons: Limited model customization
# Create isolated environment
python -m venv deepseek_env
.\deepseek_env\Scripts\activate
# Install core dependencies
pip install torch==2.3.0+cu121 -f https://download.pytorch.org/whl/torch_stable.html
pip install vllm==0.6.6.post1 deepseek-vl2[gradio]
FROM nvidia/cuda:12.1.1-devel-ubuntu22.04
RUN apt-get update && apt-get install -y python3.11
COPY requirements.txt .
RUN pip install -r requirements.txt
To implement DeepSeek-VL2, follow these steps:
Install the necessary dependencies using pip:
pip install -e .[gradio]
Example usage of DeepSeek-VL2 in Python:
import torch
from transformers import AutoModelForCausalLM
from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
from deepseek_vl2.utils.io import load_pil_images
# specify the path to the model
model_path = "deepseek-ai/deepseek-vl2-tiny"
vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
To run the Gradio demo, use the following commands:
CUDA_VISIBLE_DEVICES=2 python web_demo.py \
--model_name "deepseek-ai/deepseek-vl2-tiny" \
--port 37914
from deepseek_vl2.utils.io import load_pil_images
conversation = [
{
"role": "<|User|>",
"content": "<image>\nAnalyze this medical scan",
"images": ["./patient_scan.png"]
},
{"role": "<|Assistant|>", "content": ""}
]
pil_images = load_pil_images(conversation, max_size=(1024,1024))
processor = DeepseekVLV2Processor.from_pretrained("deepseek-ai/deepseek-vl2-small")
inputs = processor(
conversations=conversation,
images=pil_images,
force_batchify=True
).to("cuda")
model = DeepseekVLV2ForCausalLM.from_pretrained(
"deepseek-ai/deepseek-vl2-small",
torch_dtype=torch.bfloat16,
device_map="auto"
)
outputs = model.generate(
inputs_embeds=inputs_embeds,
attention_mask=inputs.attention_mask,
max_new_tokens=512,
temperature=0.7,
top_p=0.8
)
--chunk_size 512
for memory-constrained systemsBatch Processing:
llm = LLM(model="deepseek-vl2", max_batch_size=8, gpu_memory_utilization=0.85)
Quantization (FP16 → INT8):
model = quantize_model(model, quantization_config=BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0
))
ollama serve --tls-cert cert.pem --tls-key key.pem
CI/CD Pipeline:
# GitHub Actions Example
- name: DeepSeek Model Test
run: |
ollama pull deepseek-vl2-tiny
pytest vision_tests/
env:
OLLAMA_HOST: 127.0.0.1
CUDA_VISIBLE_DEVICES: 0
Monitoring:
ollama logs --format json | jq '.latency, .gpu_util'
Problem: CUDA Out-of-Memory Error
Solution:
# Reduce image resolution
processor.image_size = (512,512)
# Enable gradient checkpointing
model.gradient_checkpointing_enable()
Problem: Ollama Connection Refused
Fix:
netsh advfirewall firewall add rule name="Ollama Port" dir=in action=allow protocol=TCP localport=11434
Problem: Slow Inference Speed
Optimizations:
nvidia-smi -pm 1
export OLLAMA_FP8_MATH=1
Edge Deployment:
torch.onnx.export(model, inputs, "deepseek-vl2.onnx", opset_version=18)
Model Updates:
ollama pull deepseek-vl2-2024Q3
To start using DeepSeek:
Run Command: Type the following command:
ollama run deepseek-r1:8b
By following these instructions and utilizing the code examples, you can effectively run and implement DeepSeek-VL2 on a Windows environment.
Connect with top remote developers instantly. No commitment, no risk.
Tags
Discover our most popular articles and guides
Running Android emulators on low-end PCs—especially those without Virtualization Technology (VT) or a dedicated graphics card—can be a challenge. Many popular emulators rely on hardware acceleration and virtualization to deliver smooth performance.
The demand for Android emulation has soared as users and developers seek flexible ways to run Android apps and games without a physical device. Online Android emulators, accessible directly through a web browser.
Discover the best free iPhone emulators that work online without downloads. Test iOS apps and games directly in your browser.
Top Android emulators optimized for gaming performance. Run mobile games smoothly on PC with these powerful emulators.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.
ApkOnline is a cloud-based Android emulator that allows users to run Android apps and APK files directly from their web browsers, eliminating the need for physical devices or complex software installations.
Choosing the right Android emulator can transform your experience—whether you're a gamer, developer, or just want to run your favorite mobile apps on a bigger screen.
The rapid evolution of large language models (LLMs) has brought forth a new generation of open-source AI models that are more powerful, efficient, and versatile than ever.