Stand Out From the Crowd
Professional Resume Builder
Used by professionals from Google, Meta, and Amazon
3 min to read
DeepSeek AI has developed the DeepSeek-VL2, a mixture-of-experts vision-language model. This model is designed to understand and process both images and text, allowing it to perform tasks such as image understanding, object localization, and grounded captioning. You can run DeepSeek-VL2 on Windows using tools like LM Studio or Ollama.
DeepSeek-VL2 is a state-of-the-art multimodal AI model that combines:
Component | Minimum | Recommended |
---|---|---|
OS | Windows 10 | Windows 11 |
RAM | 8GB | 16GB+ |
Storage | 15GB | 30GB SSD |
GPU | NVIDIA GTX 1060 | RTX 3080+ |
Python | 3.8+ | 3.10+ |
# 1. Download installer from ollama.ai
# 2. Run PowerShell as Admin
$env:OLLAMA_DEBUG="1" & "ollama app.exe"
# 3. Launch model
ollama run deepseek-r1:8b
Pros: Lightweight, terminal-based | Cons: Requires CLI familiarity
Best For: Beginners preferring visual interface
1. Visit [DeepSeek Chat](https://chat.deepseek.com)
2. Use "Try Now" demo (registration currently paused)
Note: Limited functionality vs local installation
# 1. Environment Setup
pip install torch==2.1.0 transformers==4.35.0 deepseek-vl2
# 2. Basic Image Analysis
from deepseek_vl2 import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
model = DeepseekVLV2ForCausalLM.from_pretrained("deepseek-ai/deepseek-vl2-tiny")
processor = DeepseekVLV2Processor.from_pretrained(model_path)
# 3. Object Localization Example
conversation = [{
"role": "<|User|>",
"content": "<image>\n<|ref|>Identify all vehicles<|/ref|>",
"images": ["traffic_scene.jpg"]
}]
To use DeepSeek-VL2 in a Python environment, follow these steps:
Generate Response:
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True
)
answer = tokenizer.decode(outputs.cpu().tolist(), skip_special_tokens=False)
print(f"{prepare_inputs['sft_format']}", answer)
Prepare Inputs:
conversation = [
{"role": "<|User|>", "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>", "images": ["./images/visual_grounding_1.jpeg"]},
{"role": "<|Assistant|>", "content": ""},
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True,
system_prompt=""
).to(vl_gpt.device)
Load Processor and Model:
vl_chat_processor = DeepseekVLV2Processor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
Specify Model Path:
model_path = "deepseek-ai/deepseek-vl2-tiny"
Import Required Libraries:
import torch
from transformers import AutoModelForCausalLM
from deepseek_vl2.models import DeepseekVLV2Processor, DeepseekVLV2ForCausalLM
from deepseek_vl2.utils.io import load_pil_images
Install Dependencies:
pip install -e .[gradio]
<|ref|>
and <|/ref|>
.<|grounding|>
token at the beginning of the prompt enables object localization and reasoning.conversation = [
{"role": "<|User|>", "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>", "images": ["./images/visual_grounding_1.jpeg"]},
{"role": "<|Assistant|>", "content": ""},
]
conversation = [
{
"role": "<|User|>",
"content": "This is image_1: <image>\n"
"This is image_2: <image>\n"
"This is image_3: <image>\n"
"Can you tell me what are in the images?",
"images": [
"images/multi_image_1.jpeg",
"images/multi_image_2.jpeg",
"images/multi_image_3.jpeg",
],
},
{"role": "<|Assistant|>", "content": "..."}
]
Gradio Demo: To run a Gradio demo, install the required dependencies and use:
pip install -e .[gradio]
Inference: Run inference using:
CUDA_VISIBLE_DEVICES=0 python inference.py --model_path "deepseek-ai/deepseek-vl2"
# Enable Flash Attention 2
CUDA_VISIBLE_DEVICES=0 python inference.py --use_flash_attn 2
Resource | Optimization Strategy |
---|---|
GPU VRAM | Use --precision bfloat16 |
CPU | Enable OpenMP threading |
Storage | NVMe SSD for model loading speed |
Q: Can I run this without GPU?
A: Possible with CPU-only mode, but expect 10x slower performance
Q: Model size options?
A: Available variants: Tiny (8B), Base (24B), Pro (72B)
Q: Commercial use?
A: Check DeepSeek's licensing terms for your use case
Need expert guidance? Connect with a top Codersera professional today!