Create Your Imagination
AI-Powered Image Editing
No restrictions, just pure creativity. Browser-based and free!
3 min to read
InternVideo2.5 represents an advanced video multimodal large language model (MLLM), extending upon InternVL2.5 with the incorporation of long and rich context (LRC) modeling.
This enhancement facilitates improved perception of fine-grained details and the comprehension of extended temporal structures.
InternVideo2.5 is an open-source video understanding model that excels at tasks like:
Built on PyTorch, it leverages advanced architectures like Vision Transformers (ViTs) and is pretrained on large datasets for robust performance.
Before proceeding with the installation, confirm that your system satisfies the following requirements:
If Python is not already installed, obtain the latest version from the official Python website. Ensure that the installation process includes adding Python to the system's PATH environment variable.
To verify installation, execute the following commands in a command prompt:
python --version
pip --version
Creating a virtual environment is strongly recommended to encapsulate dependencies specific to InternVideo2.5 and mitigate compatibility issues.
cd your_project_directory
python -m venv internvideo_env
internvideo_env\Scripts\activate
Utilize pip to install the essential packages:
pip install transformers==4.40.1 av imageio decord opencv-python flash-attn --no-build-isolation
Retrieve the InternVideo2.5 model from the Hugging Face Model Hub:
from transformers import AutoModel, AutoTokenizer
model_path = 'OpenGVLab/InternVideo2_5_Chat_8B'
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
Ensure that system environment variables are correctly configured for CUDA:
setx PATH "%PATH%;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin"
Ensure input video files are in a supported format before processing with InternVideo2.5.
import cv2
import numpy as np
def extract_key_frames(video_path, output_folder, frame_interval=30):
cap = cv2.VideoCapture(video_path)
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_interval == 0:
output_path = f"{output_folder}/frame_{frame_count}.jpg"
cv2.imwrite(output_path, frame)
frame_count += 1
cap.release()
extract_key_frames("sample_video.mp4", "frames_output")
import whisper
model = whisper.load_model("base")
result = model.transcribe("sample_video.mp4")
print(result["text"])
import torch
from some_video_processing_module import load_video
def generate_video_captions(video_path):
pixel_values, num_patches_list = load_video(video_path, num_segments=128, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
question = "Describe this video in detail."
video_prefix = "".join([f"Frame{i+1}: \n" for i in range(len(num_patches_list))])
question = video_prefix + question
output, _ = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, history=None, return_history=True)
print(output)
generate_video_captions("sample_video.mp4")
To execute InternVideo2.5, run the relevant script:
python your_script_name.py
# Enhanced video loader with error handling
def safe_load_video(path):
try:
vr = VideoReader(path, ctx=cpu(0))
return vr
except Exception as e:
print(f"Error loading {path}: {str(e)}")
return None
prompt_template = """
Analyze this video from {timestamp} to {duration}:
{query}
Consider these aspects:
- Object interactions
- Temporal relationships
- Scene context
- Action sequences
"""
Technique | Speed Gain | Quality Impact |
---|---|---|
Mixed Precision (FP16) | 2.1x | Minimal |
Flash Attention 2 | 1.8x | None |
Batch Processing | 3.5x | Context Loss |
# Enable advanced optimizations
model = AutoModel.from_pretrained(...).half().to('cuda')
model = torch.compile(model) # PyTorch 2.0 feature
model.gradient_checkpointing_enable()
nvidia-smi -l 1
num_segments=64
import gc
gc.collect()
torch.cuda.empty_cache()
ffprobe your_video.mp4
Codec Issues: Convert to H.264 using FFmpeg:
ffmpeg -i input.avi -c:v libx264 output.mp4
If utilizing InternVideo2.5 for research purposes, please cite:
@article{wang2025internvideo,
title={InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling},
author={Wang, Yi and Li, Xinhao and Yan, Ziang and others},
journal={arXiv preprint arXiv:2501.12386},
year={2025}
}
# Example: Educational Video Analyzer
def generate_lecture_summary(video_path):
analysis = model.analyze(video_path)
return f"""
Lecture Summary:
- Key Topics: {analysis['topics']}
- Visual Aids: {analysis['diagrams']}
- Recommended Study Points: {analysis['important_concepts']}
"""
By adhering to the aforementioned steps, users can successfully install and execute InternVideo2.5 on a Windows system, leveraging its capabilities for advanced video analysis and multimodal comprehension.
Need expert guidance? Connect with a top Codersera professional today!